Chinese Chemical Letters Vol. 16, No. 7, pp 893-896, 2005 http://www.imm.ac.cn/journal/ccl.html

Reduction of 1- Deoxy -13 – oxotaxanes

Meng ZHANG, Da Li YIN*, Ji Yu GUO, Xiao Tian LIANG

Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050

Abstract: Reduction of 1-deoxy-13-oxotaxanes has been studied under different reaction conditions. Some interesting reactions were reported.

Keywords: Paclitaxel, taxane, reduction.

Numerous reports have described the semisynthesis of paclitaxel and its anologues from different taxoids ¹. However, to the best of our knowledge almost all taxoids have a C-1-hydroxyl. Heretofore, the semisynthesis from taxinine, an abundant natural taxoid lacking of C-1-hydroxyl, has only reached the point of C-13 ketone intermediate ². We have also encountered difficulties in reducing C-13 ketone to corresponding α - hydroxy group using the same conditions as in total synthesis of paclitaxel. The possible reason would be that the carbonyl at C-13 position of 1-deoxytaxane is not easy to be reduced to α -hydroxyl under a mild condition without assistance of C-1-hydroxyl ^{3,6}. Recently, we have reported sinenxan A was transformed to baccatin III analogue and discover that C-4-hydroxy assist the reduction of C-13-carbonyl of 1-deoxytaxane to get C-13- α -hydroxyl ⁴. Here we report some interesting results of C-13-carbonyl to C-13- α - hydroxyl using different reductants.

When **1** was treated with K-selectride, an unusual 10-deoxytaxane **2** was obtained ⁵. Compared with that of **1**, the ¹HNMR spectrum of **2** showed the proton signals of 10-acetyl and H-10 disappeared and the proton signal at C-9 position was changed from δ 2.48 ppm (dd, J = 12, 15 Hz) and δ 1.77 ppm (dd, J = 6, 15.5 Hz) to δ 2.14 ppm (dt, J = 12, 5, 16 Hz)

^{*} E-mail: yindali@imm.ac.cn

and δ 1.51 ppm (m, J = 5, 15.5 Hz), which were coupled with a group of newly observed peaks at δ 2.91 ppm (dq, J= 5.5, 12, 13.5 Hz) and δ 2.39 ppm (dt, J = 5, 13 Hz), assigned to H-10. Other proton signals did not give an obvious shift. ¹³CNMR indicates the signal of C-10 and 10-Acetate carbonyl group has been removed away from downfield, the carbonyl signal at C-13 position and double bond signal at C-11 and C-12 was retained. FABMS give a molecular weight of 402 which indicates a deletion of acetoxyl group from its framework. All data confirmed the structure of 10-deoxytaxane **2** (Scheme 1).

The formation of **2** may be explained by **scheme 1**. While 13-oxo of **1** was reduced with K-selectride, the newly formed H-13 was caught by strong base in the solution. Double bond $\Delta^{10,11}$ was formed and the acetoxyl group at C-10 was removed by an electron transfer procedure. After workup, the enol compound was transformed into ketone **2**.

When NaBH₄ was employed to reduce the C-13 carbonyl, **3** was successfully converted to **4** by a transannular assistant of C-4-hydroxy ³. However, when **5** was reduced with NaBH₄, a 20-deacetyl product **6** was given ⁵. Obviously, the 5-mesyl of **5** forms a hydrogen bond with C-4-hydroxyl so as to break the hydrogen bond between C-13-oxo and C-4-hydroxyl. Thus C-13-oxo of **5** cannot be reduced and excess NaBH₄ has enough ability to reductive deacetylation of 20-acetyl after a long reaction time. (Scheme 2)

Among the reductants, DIBAH is another choice to get C-13- α -hydroxyl. When **1** was treated with DIBAH, some complex products were shown on TLC which may be caused by the ability of DIBAH to reduce acyl group. Thus **1** was converted into **7** and then treated with DIBAH resulted in **8**⁵ as a single product (scheme **3**). ¹HNMR shows a new proton signal resonates at δ 4.23 ppm correlated to H-14. NOE spectrum reveals this proton display a strong correlation with H-14, CH₃-17, CH₃-18. These data indicate it is a signal of H-13 with β orientation, which means C-13- α -hydroxyl group was formed.

Scheme 2

Scheme 3

In summary, we have got two methods to reduce C-13-carbonyl of 1-deoxytaxane to C-13- α -hydroxyl, reduction with NaBH₄ by a transannular assistant of C-4-hydroxyl and reduction with DIBAH by pre-protection of the other functional groups. We wish our research can offer some help for the study of taxoids chemistry.

Acknowledgment

This research work was financially supported by NNSFC grant No. 3977082 and No. 30100230.

References and Notes

- a) D. G. I. Kinston, A. G. Chandhary, A. A. L. Gunatilaka, *Tetrahedron Lett.*, **1994**, *35*, 4483. b)
 R. A. Holton, US Patent 5015744. c) J. N. Danis, A. Greene, D. Gunenard, *et al.*, *J.Am. Chem. Soc.*, **1988**, *110*, *5919*. d) R. N. Saicic, R. Matovic, *J. Chem. Soc. Perkin Trans.* 1, **2000**, 59.
- 2. T. Horiguchi, T. Oritani, H. Kiyota, Tetrahydron, 2003, 59, 1529
- 3. H. Suzuki, M. Sako, K. Hirota, Chem. Pharm. Bull., 1998, 46, 857
- 4. M. Zhang, D. L. Yin, J. Y. Guo, X. T. Liang, *Tetrahedron Lett.*, 2002, 43, 9425.
- 5. Compound 1, 3, 4, 5 were synthesized according to reference 4.
- Spectral data of compound **2**: colorless film; FABMS m/z 425 (M+Na); ¹H NMR (500 MHz, CDCl₃, δ ppm) 5.44 (dd, 1H, J = 2, 6 Hz, H-2), 5.20 (t, 1H, J = 3.5 Hz, H-5), 5.16 (s, 1H, H-20), 4.77 (s, 1H, H-20), 3.28 (d, 1H, J = 6 Hz, H-3), 2.91 (dq, 1H, J = 5.5, 12.5, 13.5 Hz, H-10), 2.75 (dd, 1H, J = 7, 20 Hz, H-14), 2.34 (d, 1H, J = 20 Hz, H-14), 2.17 (dd, 1H, J = 2, 7 Hz, H-1), 2.13 (hept., 1H, J = 5, 12, 16 Hz, H-9), 2.04-2.02 (2s, 6H, 2×OAc-CH₃), 1.99 (br.s,

3H, CH₃-18), 1.97-1.91 (m, 1H, H-7), 1.89-1.82 (m, 1H, H-6), 1.72 (m, 1H, H-6), 1.58 (s, 3H, CH₃-16), 1.52 (dt, 1H, J = 5, 15.5 Hz, H-9), 1.15 (s, 3H, CH₃-17), 1.11 (m, 1H, H-7), 0.91 (s, 3H, CH₃-19); ¹³CNMR (125 MHz, CDCl₃, δ ppm) 198.88 (C=O-13), 170.33 (OAc-C=O), 169.95 (OAc-C=O), 160.25 (C-11), 143.51 (C-4), 133.3 (C-12), 114.59 (C-20), 77.1 (C-5), 70.59 (C-2), 48.44 (C-1), 42.78 (C-9), 40.74 (C-3), 38.58 (C-8), 38.52 (C-15),36.83 (C-17), 36.01 (C-14), 33.99 (C-7), 28.79 (C-6), 26.52 (C-10), 24.45 (C-16), 22.74 (C-19), 21.46 (OAc- CH₃), 21.39 (OAc- CH₃), 13.71 (C-18).

Spectral data of compound **6**: pale yellow film; ¹H NMR (300 MHz, CDCl₃, δ ppm) 6.04 (dd, 1H, *J* = 12, 5.4 Hz, H-10), 5.54 (d, 1H, *J* = 3 Hz, H-2), 4.64 (br.s, 1H, H-5), 3.93 (d, 1H, *J* = 9.9 Hz, H-20), 3.68 (d, 1H, *J* = 9.9 Hz, H-20), 3.13 (d, 1H, *J* = 20.4 Hz, H-14), 3.04 (s, 3H, CH₃SO₂), 2.85 (d, 1H, *J* = 3.9 Hz, H-3), 2.75 (dd, 1H, *J* = 6.9, 20.4 Hz, H-14), 2.43 (dd, 1H, *J* = 12.6, 14.7 Hz, H-9), 2.17 (s, 3H, OAc-CH₃-10), 2.09 (s, 3H, OAc-CH₃-2), 2.08 (s, 3H, CH₃-18), 2.00 (m, 2H, H-7, H-1), 1.85 (m, 2H, 2×H-6), 1.68 (s, 3H, CH₃-16), 1.58 (dd, 1H, *J* = 5.4, 14.7 Hz, H-9), 1.24 (m, 1H, H-7), 1.16 (s, 3H, CH₃-17), 0.81 (s, 3H, CH₃-19);

1.24 (m, 1H, H-7), 1.16 (s, 3H, CH₃-17), 0.81 (s, 3H, CH₃-19); Spectral data of compound 7: colorless film; ¹H NMR (500 MHz, CDCl₃, δ ppm) 5.10 (br.s, 1H, H-20), 5.02 (dd, 1H, *J* = 11, 6 Hz, H-10), 4.98 (s, 1H, H-20), 4.28 (d, 1H, *J* = 5 Hz, H-2), 3.95 (br.s, 1H, H-5), 3.14 (d, 1H, *J* = 6 Hz, H-3), 2.65 (dd, 1H, *J* = 7, 20 Hz, H-14), 2.43 (d, 1H, *J* = 19.5 Hz, H-14), 2.31 (dd, 1H, *J* = 11.5 Hz, 14.5 Hz, H-9), 2.11 (d., 1H, *J* = 6 Hz, H-1), 2.01 (s, 3H, CH₃-18), 2.01-1.93 (m, 1H, H-7), 1.67 (m+s, 4H, H-9, CH₃-16), 1.55 (m, 2H, 2×H-6), 1.14 (s, 3H, CH₃-17), 1.04 (m, 1H, H-7), 0.95 (m, 30H, TES-<u>CH₃</u>, CH₃-19), 0.71-0.5 (m, 18H, TES-<u>CH₂);</u>

Spectral data of compound **8**: colorless film; ¹H NMR (300 MHz, CDCl₃, ⁶ ppm) 5.43 (br.s, 1H, H-20), 5.02 (s, 1H, H-20), 4.96 (dd, 1H, J = 10.8, 6 Hz, H-10), 4.23 (m, 1H, H-13), 4.17 (d, 1H, J = 4.8 Hz, H-2), 4.08 (br.s, 1H, H-5), 2.95 (d, 1H, J = 4.8 Hz, H-3), 2.73 (d, 1H, J = 12.6 Hz, OH-13), 2.62 (dt, 1H, J = 9.6, 16.8 Hz, H-14), 2.17 (dd, 1H, J = 11.7, 14.7 Hz, H-9), 2.01 (s, 3H, CH₃-18), 1.98 (m, 1H, H-7), 1.73 (m, 3H, 2×H-6, H-1), 1.56 (m+s, 4H, H-14, CH₃-16), 1.43 (dd, 1H, J = 5.7, 14.7 Hz, H-9), 1.05 (m, 1H, H-7), 0.98 (s, 3H, CH₃-17), 0.93 (m, 27H, TES-<u>CH₃</u>), 0.82 (s, 3H, CH₃-19), 0.71-0.5 (m, 18H, TES-<u>CH₂</u>); NOE analysis of compound **8** at C-13:

Received 23 Augest, 2004